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Abstract
The application of a weak integrability concept to the Skyrme and CPn models
in four dimensions is investigated. A new integrable subsystem of the Skyrme
model, allowing also for non-holomorphic configurations, is derived. This
procedure can be applied to the massive Skyrme model as well. Moreover,
an example of a family of chiral Lagrangians providing exact, finite energy
Skyrme-like solitons with arbitrary value of the topological charge is given.
In the case of CPn models a tower of integrable subsystems is obtained.
In particular, in (2+1) dimensions a one-to-one correspondence between the
standard integrable submodel and the BPS sector is proved. Additionally, it
is shown that weak integrable submodels allow also for non-BPS solutions.
Geometric as well as algebraic interpretations of the integrability conditions
are also given.

PACS numbers: 02.30.Ik, 12.39.Dc, 11.27.+d

1. Introduction

Among nonlinear field theories, many models with topological solitons appear to possess
particular importance in various branches of physics (see for example [1–3]). In (1+1)
dimensions one can take advantage of the well-known methods to study the mathematical
structure and dynamics of such objects (called kinks or alternatively domain walls), such
as the inverse scattering method, Lax pair formalism or the Bäcklund transformation [4, 5].
In principle, these methods are connected with the integrability property of models, which
implies the existence of infinitely many conserved currents. As a consequence, the chances for
the construction of exact, topological solutions are strongly correlated with the integrability.
Unfortunately, in higher spatial dimensions there are no such general tools allowing for a
systematical construction of solitons. What one has instead are integrable subsectors, such as

1751-8113/07/081907+17$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1907

http://dx.doi.org/10.1088/1751-8113/40/8/015
mailto:adam@fpaxp1.usc.es
mailto:joaquin@fpaxp1.usc.es
mailto:wereszczynski@th.if.uj.edu.pl
http://stacks.iop.org/JPhysA/40/1907


1908 C Adam et al

the holomorphic solitons of Belavin and Polyakov in three dimensions, predecessors of the
self-dual instantons of Yang–Mills in four dimensions.

However, there is a new promising approach, based on the construction of local zero
curvature representations for nonlinear models, which enables one to calculate sufficient
conditions for the existence of integrable subsystems, even though the full model does not
have necessarily such a property (which would be thereby exhibited if present [6, 7]). Here,
integrability is understood as possessing a zero curvature formulation and the existence of
an infinite number of conserved currents. The significance of this method originates in the
expectation that also in higher dimensional theories integrability is an important step in the
way of deriving analytical solutions.

That this works has been shown in investigations of especially useful models with Hopf
solitons, where an integrable sector of the Nicole model has been found [8]. It was also proved
that the simplest Hopf soliton belongs to this sector. Further, a model with infinitely many
exact hopfions has been given [9, 10].

As is well known, a general sufficient condition (the so-called generalized BPS) for
the Skyrme model [11–13] analogous to the Baby Skyrme or self-dual cases has not been
found. Simplified models based on the Skyrme idea of avoiding the scaling instabilities,
like those mentioned above, have been investigated. Among them, the interesting Skyrme–
Faddeev–Niemi model. Unfortunately the integrable sector of this well-known model [14, 15]
seems to contain no topological solitons. In order to cope with this problem, one natural
option is to relax the pertinent integrability condition (which in this case is the eikonal equation
[16, 17]). The construction of such weaker integrability conditions has been recently described
in [18]. As one might anticipate, the space of solutions of this new, weaker integrable submodel
is considerably larger than the standard one. However, the problem whether it is populated by
hopfions is still an open question.

In the case of the Skyrme model the zero curvature method also allowed us to discover a
special integrable subsystem [19]. The skyrmion with unit topological charge is a solution of
this restricted submodel, but solitons with higher value of the baryon number do not belong to
the integrable submodel.

The main aim of the present paper is to define, by means of weaker integrability conditions,
a new (‘weaker’) integrable sector of the Skyrme theory with a substantially richer set of
configurations, which enhances the chance to find skyrmions among them. This is carried out
in section 2, where, in addition, we generalize the procedure of Aratyn, Ferreira and Zimerman
and introduce a Skyrme-like model which possesses infinitely many exact, chiral solitons with
arbitrary topological charge. Using this toy model one can study in an analytical way chiral
solitons, their energies and profiles. It is an alternative approach to the so-called Baby Skyrme
models [20, 21] which also allows for analytical treatment of the solitons (baby skyrmions)
but in lower dimensional spacetime.

In section 3, we present the investigations of the CPn model in any dimension with similar
results. In particular, in the case of the CPn model in two spatial dimensions, we discuss
connections between strong/weak integrability and BPS/non-BPS sectors. The conclusions
are summarized in section 4.

2. Skyrme model

2.1. Standard integrable submodel

The Skyrme model, without potential term for the chiral field, is given by the following
formula:
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L = f 2
π

4
Tr(U †∂µUU †∂µU) − 1

32e2
Tr[U †∂µU,U †∂µU ]2, (1)

where fπ, e are constants and U is a SU(2)-valued matrix field parameterized in the standard
manner as

U = eiξi τ
i

. (2)

Here, τi, i = 1, 2, 3 are the Pauli matrices and ξi are real fields. However, using results of
[19] it is convenient to take advantage of the slightly different parametrization

U = eiξT . (3)

Here

ξ ≡
√

ξ 2
1 + ξ 2

2 + ξ 2
3 (4)

and

T ≡ 1

1 + |u|2
(|u|2 − 1 −2iu

2iu∗ 1 − |u|2
)

, (5)

where the complex field appears due to the standard stereographic projection

�ξ
ξ

= 1

1 + |u|2 (u + u∗,−i(u − u∗), |u|2 − 1). (6)

Then, in the notation of [19] we derive the equations of motion

DµBµ = ∂µBµ + [Aµ,Bµ] = 0, (7)

where

Aµ ≡ 1

1 + |u|2
(

−i∂µuτ+ − i∂µu∗τ− +
1

2
(u∂µu∗ − u∗∂µu)τ3

)
(8)

Bµ ≡ −iRµτ3 +
2 sin ξ

1 + |u|2 (eiξ Sµτ+ − e−iξ S∗
µτ−), (9)

whereas

Rµ ≡ ∂µξ − 8λ
sin2 ξ

(1 + |u|2)2
(Nµ + N∗

µ) (10)

Sµ ≡ ∂µu + 4λ

(
Mµ − 2 sin2 ξ

(1 + |u|2)2
Kµ

)
(11)

and

Kµ ≡ (∂νu∂νu
∗)∂µu − (∂νu)2∂µu∗ (12)

Mµ ≡ (∂νu∂νξ)∂µξ − (∂νξ)2∂µu (13)

Nµ ≡ (∂νu∂νu
∗)∂µξ − (∂νξ∂νu)∂µu∗. (14)

In addition, τ± ≡ (τ1 ± iτ2)/2.
It has been proved [19] that the standard integrable sector of the Skyrme model is defined

by imposing two constraints

Sµ∂µu = 0, Rµ∂µu = 0 (15)
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or in a more restricted form

(∂µu)2 = 0, ∂µξ∂µu = 0. (16)

One can note that the first integrability condition is nothing else but the complex eikonal
equation.

Then, one can construct two classes of infinitely many currents

JG
µ = ∂G

∂u
Sµ − ∂G

∂u∗ S∗
µ (17)

J (H1,H2)
µ = 4 sin ξ cos ξ(H1Sµ + H2S

∗
µ) − (1 + |u|2)2

(
∂H1

∂u∗ +
∂H2

∂u

)
Rµ, (18)

where G is an arbitrary function of ξ, u, u∗ whereas H1,H2 depend only on u and u∗. Indeed,
such currents are conserved if the fields satisfy the integrability condition (15). The importance
of this integrable submodel becomes transparent if one notes that the skyrmions with charges
Q = ±1 belong to it. Also the rational map Ansatz, which is widely used to approximate
solitons numerically [22–25] (but which does not provide exact soliton solutions for charges
|Q| > 1), obeys the conditions (15).

On the other hand, it is known that the eikonal equation constrains the space of solutions
in a rather considerable way. For example, as was mentioned before, there has been found
only one topological soliton in the integrable submodel of the Nicole model. In the Faddeev–
Skyrme–Niemi model the integrable submodel seems to contain no solitons.

In the case of the Skyrme model the assumption of the eikonal equation as a constraint
results in a restriction of the form of the u field. Concretely, for the separation of variable ansatz
ξ = ξ(r) and u = u(θ, φ) a u field obeying the eikonal equation must be a (anti)holomorphic
function of the variable z = tan

(
θ
2

)
eiφ . If we combine it with the requirement of the finiteness

of the topological charge, then we find that u must be just a rational map in z and, as a
consequence, skyrmions with higher charges do not belong to this integrable sector. Because
of that, it is reasonable to seek other integrable submodels, which are defined by weaker
integrability conditions.

2.2. New integrable submodel

It has been recently demonstrated [18] that for all nonlinear theories in Minkowski space
with two-dimensional target space there exists an integrability condition which is weaker than
the eikonal equation. Here, we will apply this result in the context of the Skyrme model.
This weak integrable model is certainly not empty, because it contains the strong integrable
submodel, which has the Q = ±1 skyrmions as solutions.

We begin with the only assumption that

∂µξ∂µu = 0 (19)

whereas, contrary to the standard integrability subsector, (∂u)2 is allowed to take arbitrary, in
particular non-zero, values. Thus, we get only the second constraint in equation (15)

Rµ∂µu = 0. (20)

The pertinent equations of motion read

∂µSµ = 2

1 + |u|2 u∗Sµ∂µu (21)

and

∂µRµ = 4
sin ξ cos ξ

(1 + |u|2)2
Sµ∂µu∗. (22)
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Since the eikonal equation is not imposed, Sµ∂µu �= 0 and the left-hand side in (21) is not
identically zero. One can find that

Sµ∂µu = (∂u)2(1 − 4λ2(∂ξ)2). (23)

The first class of conserved currents can be taken as follows:

JG
µ = GuSµ − Gu∗S∗

µ. (24)

In spite of the fact that the form of the currents is identical to (17) there is, however, a subtle
modification. Now, an arbitrary function G is assumed to depend on the square of the modulus
of u, i.e., G = G(uu∗, ξ).

Then, the divergence reads

∂µJµ = Guu∂
µuSµ + Guu∗∂µu∗Sµ + Gu∂

µSµ − Gu∗u∗∂µu∗S∗
µ

−Gu∗u∂
µuS∗

µ − Gu∗∂µS∗
µ + Gu∂

µξSµ − Gu∗∂µξS∗
µ. (25)

Taking into account (20) and observing that

Sµ∂µξ = 0, ∂µu∗Sµ = ∂µuS∗
µ

we get

∂µJµ = G′′(u∗2∂µuSµ − u2∂µu∗S∗
µ) + G′(u∗∂µSµ − u∂µS∗

µ), (26)

where prime denotes differentiation with respect to the modulus squared. Using (21) and (23)
one can rewrite it as

∂µJµ = G′′(1 − 4λ2(∂ξ)2)[u∗2(∂u)2 − u2(∂u∗)2]

+ G′ 2

1 + |u|2 (1 − 4λ2(∂ξ)2)[u∗2(∂u)2 − u2(∂u∗)2]. (27)

Thus, the current is conserved if we assume the weak integrability condition

[u∗2(∂u)2 − u2(∂u∗)2] = 0. (28)

Similarly, one can consider the second type of currents, i.e.,

J (H1,H2)
µ = 4 sin ξ cos ξ(H1Sµ + H2S

∗
µ) − (1 + |u|2)2

(
∂H1

∂u∗ +
∂H2

∂u

)
Rµ. (29)

It can be easily shown that its divergence vanishes if the functions H1 and H2 are of the form

H1 = ∂h

∂u
, H2 = − ∂h

∂u∗ ,

where h is any function of the modulus squared uu∗. This strongly simplifies the currents.
Namely, they are reduced to the first class of currents JG.

Let us now summarize the results obtained so far. We have defined a new integrable sector
of the Skyrme model which consists of two integrability constraints

∂µξ∂µu = 0, u∗2(∂u)2 − u2(∂u∗)2 = 0 (30)

and two dynamical equations (21), (22). The pertinent infinite family of conserved currents is
parameterized by any function G, which depends on uu∗ and ξ in an arbitrary manner

JG
µ = GuSµ − Gu∗S∗

µ. (31)

The geometric meaning of the integrability conditions (30) becomes especially well visible if
we express the complex field in terms of the scalars 	,


u = e	+i
. (32)
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Then, using equations (30) we get

∂µ
∂µ	 = 0, ∂µ
∂µξ = 0, ∂µ	∂µξ = 0. (33)

In other words, in the integrable sector all gradients of the scalar fields must be mutually
perpendicular.

It is worth noting that such an integrable submodel can be constructed for a massive
generalization of the Skyrme theory [26] as well. For example, introducing the most typical
massive term

V = f 2
π m2 Tr(1 − U) (34)

results in a modification of equation (22)

∂µRµ = 4
sin ξ cos ξ

(1 + |u|2)2
Sµ∂µu∗ + 2m2 sin ξ. (35)

One can check that it does not influence the definition of the integrable sector and the conserved
currents. This may be of some interest since the Skyrme model with a massive term serves
considerably better as a model of the low energy QCD, describing low energy degrees of
freedom i.e. hadrons and nucleons with acceptable accuracy [27, 28].

As was discussed in the previous subsection, all rational maps (or generally holomorphic
functions) obey the standard integrability condition. Obviously, they satisfy the weaker
condition as well. However, this weaker condition allows for a much larger class of
configurations. For instance, non-holomorphic functions in the form (32) fulfil the constraint.
This may be of some interest since it has been recently shown that a non-holomorphic Ansatz
approximates true Skyrme solitons considerably better than the standard rational Ansatz
[29, 30]. In particular, the non-holomorphic approximation of the skyrmion with topological
charge Q = 2 [29] (which is not an exact solution of the field equations) obeys our integrability
condition.

2.3. Integrable chiral model

One might ask whether it is possible to further relax the integrability conditions (30). In fact,
one can construct a chiral SU(2) model which is integrable even if the second constraint in
(30) is neglected. In other words, there are no additional requirements for the complex field u.
This property, as it will be shown below, allows for the existence of solitons with an arbitrary
value of the topological charge.

The model we are going to focus on is given by the following Lagrangian density:

L = −f (ξ)g(u, u∗)[Kµ∂µu∗]
3
4 + [(∂µξ)2]

3
2 , (36)

where f and g are arbitrary, differentiable functions depending on ξ and u, u∗ respectively.
Additionally

Kµ = (∂νu∂νu∗)∂µu − (∂νu∂νu)∂µu∗. (37)

The fractional exponent presented in the upper formula is understood as follows:

[Kµ∂µu∗]
3
4 ≡ Kµ∂µu∗|Kµ∂µu∗|− 1

4 . (38)

It can be observed that such a form of the model guarantees also an interesting way of
circumventing Derrick’s theorem since the energy is invariant under scaling transformations.
This attempt was originally proposed 30 years ago by Deser et al [31] to consider the theory
of pion fields πi and further developed by many authors (see the Nicole model [8], Aratyn–
Ferreira–Zimerman model [10] and their generalizations [32, 33]). Let us note that our model
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can be treated as the modified AFZ model coupled in a non-minimal way (via the dielectric
function f ) with a non-standard scalar field3.

In principle, one may rewrite this model in terms of the original chiral field U but in
practice such a Lagrangian would take a completely illegible form.

The pertinent equation of motion for the complex scalar field reads
3
2∂µ[fg[Kµ∂µu∗]−

1
4 Kµ] − gu∗f [Kµ∂µu∗]

3
4 = 0, (39)

where gu∗ ≡ ∂u∗g. This equation can be simplified to the following expression:

∂µ[fg
1
3 [Kµ∂µu∗]−

1
4 Kµ] = 0 (40)

or in the most compact form

∂µKµ = 0, (41)

where

Kµ = fg
1
3 [Kµ∂µu∗]−

1
4 Kµ. (42)

The second independent equation of motion, for the real scalar field ξ , is

3∂µ[[(∂µξ)2]
1
2 ∂µξ ] + fξg[Kµ∂µu∗]

3
4 = 0. (43)

In order to establish the integrability property of the model we introduce the following currents:

Jµ = KµGu − K∗
µGu∗, (44)

where G is an arbitrary function of u, u∗ and ξ . Taking into account the equations of motion
it can be proved that these currents are conserved if we assume only one constraint (19). It
is due to the fact that the expression Kµ∂µu = 0 is a mathematical identity which does not
restrict the form of the complex field.

In order to find topologically non-trivial solutions of these dynamical equations we will
consider only time-independent configurations and assume the Ansatz for the fields

u = u(φ, θ) = einφh(θ) (45)

and

ξ = ξ(r), (46)

where the spherical coordinates (r, θ, φ) have been introduced. Here n is an integer number.
Of course, such an Ansatz obeys the integrability condition. Thus, the obtained solitons will
belong to the integrable submodel.

One can easily find that

�K · ∇u∗ = 4

(
nhhθ

sin θr2

)2

(47)

and as a consequence

�K =
√

2g1/3f

(
nhhθ

sin θ

) 1
2 einφ

r2

[
0,

nh

sin θ
, ihθ

]
. (48)

Substituting these formulae into the pertinent field equation we get the following second order,
ordinary differential equation for the function h:

∂θ

[
nhg1/3

(
nhhθ

sin θ

) 1
2

]
− nhθg

1/3(h)

(
nhhθ

sin θ

) 1
2

= 0. (49)

3 Models with a non-canonical kinetic term for the scalar field have been recently widely discussed in the cosmology.
They have been applied in the context of inflation [34], dark matter [35] as well as the modified Newtonian dynamics
(MOND) [36]. For the detailed studies of the kinetic term occurring in our model (36) see [37].
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It can be simplified to this expression

∂θ

[
g1/3

(
hhθ

sin θ

) 1
2

]
= 0, (50)

which possesses the obvious solution

g1/3

(
hhθ

sin θ

) 1
2

= µ, (51)

where µ is a positive constant.
Taking into account the Ansatz and the upper obtained solution (51) we are able to rewrite

the equation of motion for ξ in the form

3

r2
∂r [r2|ξr |ξr ] − fξ

(2n)3/2µ3

r3
= 0. (52)

After introducing a new variable

x = ln r (53)

we derive the following equation:

∂x [|ξx |ξx] − fξ

(2n)3/2µ3

3
= 0. (54)

Fortunately it can be integrated for any function f . The solution is

(ξx)
3 = (2n)3/2

2
µ3f (ξ). (55)

Both formulae (51) and (55) can be integrated, at least using standard numerical methods, for
all reasonable functions g and f leading to the following general solutions:∫

g2/3h dh = −µ2 cos θ + α0 (56)

and ∫
dξ
3
√

f
= (2n)1/2

3
√

2
µ ln

r

r0
, (57)

where α0, r0 are integration constants.
Let us now analyse in detail a particular case with the following forms of the coupling

functions:

g(u, u∗) = 1

(1 + |u|2)3
(58)

and

f (ξ) = sin3 ξ. (59)

The corresponding Lagrangian density can be expressed as follows:

L = −sin3 ξ [�n · (∂µ�n × ∂ν �n)]
3
4 + [(∂µξ)2]

3
2 , (60)

where �n = �ξ/ξ is a three-component unit vector.
Then

hhθ

(1 + h2)2
= µ2 sin θ. (61)
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Hence, the solution is given as follows:

h2 = (1 + α0 + µ2) sin2 θ
2 + (1 + α0 − µ2) cos2 θ

2

(−α0 − µ2) sin2 θ
2 + (−α0 + µ2) cos2 θ

2

. (62)

This solution reduces to a well-known form if the parameters satisfy

1 + α0 − µ2 = 0, µ2 + α0 = 0. (63)

That is

α0 = − 1
2 , µ2 = 1

2 . (64)

Indeed, then we get

h = tan
θ

2
. (65)

In other words, we obtained the following complex scalar field:

u(θ, φ) = einφ tan
θ

2
. (66)

One can observe that if we take into account the stereographic projection then we find

�n = (cos nφ sin θ, sin nφ sin θ, cos θ) . (67)

The remaining field equation

ξx =
√

n
3
√

2
sin ξ (68)

can be solved as well, providing the solution

ξ = 2 arctan

(
r

r0

) √
n

3√2

. (69)

The topological charge of the obtained configuration can be computed from the standard
expression

Q = 1

4π2

∫
2i

du ∧ du∗ ∧ dξ

(1 + |u|2)2
. (70)

Inserting our solutions (66), (69) into (70) one gets

Q = n

∫
dξ

π
= n

ξ(0) − ξ(∞)

π
= −n. (71)

Therefore the solution represents a chiral field with arbitrary value of the baryon number.
Let us now compute the corresponding total energy. In the case of static configurations it

is given by

E =
∫

(f (ξ)g(u, u∗)[ �K∇u∗]
3
4 + [(∇ξ)2]

3
2 ) d3x. (72)

In particular, for the example considered above, it can be rewritten as

E =
∫ [(n

2

) 3
2 sin3ξ

r3
+ (ξ ′

r )
3

]
r2 sin θ dφ dθ dr. (73)

Taking into account equation (51) we get

E = 4π · 3
∫ ∞

0
dr r2ξ 3

r . (74)
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Finally, using solution (69) one finds that

E = 3π2

3
√

2
n. (75)

As one could expect the energy of the obtained configurations is proportional to the topological
charge.

Remark. It is easy to observe that solutions of the model (36) with other coupling function
g(u, u∗) have the same topological properties. Of course, this is true only if the pertinent
boundary conditions for h and ξ are fulfilled. Namely,

ξ −→
{

0 or π if r → 0
π or 0 if r → ∞,

h −→
{

0 or ∞ if θ → 0
∞ or 0 if θ → ∞.

(76)

For instance, if one considers the function g in the following form:

g(u, u∗) = 1

(1 + |u|2)p , (77)

where p > 3/2, then the general solution reads

h2 =
(

3

2(2p − 3)(µ2 cos θ − α0)

) 3
2p−3

− 1. (78)

The topologically interesting configuration is obtained if the constants are

µ2 = 3 · 2
3−2p

3

4(2p − 3)
, α0 = −µ2. (79)

Indeed,

h2 =
(

2

cos θ + 1

) 3
2p−3

− 1 (80)

is a function which satisfies the required boundary conditions (76). The energy-charge relation
remains unchanged. Assuming other forms of the function g, it is possible to construct more
complicated but still topologically non-trivial solutions.

Remark. In order to derive solutions with fractional topological charge one can consider the
following coupling function:

f (ξ) = sin3

(
ξ

q

)
, (81)

where q is a positive parameter. The function g is assumed in the standard form (58) providing
the previously described complex field (66). However, the real field ξ is no longer a map onto
the segment [0, π ]. Indeed, now it is given by the expression

ξ = 2q arctan

(
r

r0

) √
n

q
3√2

(82)

i.e., ξ ∈ [0, qπ ]. Therefore, the original chiral field U does not cover the whole target space
providing an arbitrary, in general non-integer, value of the pertinent topological index

Q = −nq. (83)

Nonetheless, the energy is still finite

E = 3 3
√

2π2nq. (84)

As one sees, the energy is proportional to Q even if it takes non-integer value.
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The existence of finite energy solutions with any non-integer value of the topological
index can indicate that the obtained chiral solitons are unstable. This is in accordance with
[37] where we have shown that the static Hopf solitons in the Aratyn–Ferreira–Zimerman
model have analogous stability problems.

3. CPn model

3.1. Standard integrable submodel

Let us now investigate the CPn model in an arbitrary dimensional spacetime [7, 38–40]

L = (1 + u† · u)(∂µu† · ∂µu) − (u† · ∂µu)(∂µu† · u)

(1 + u† · u)2
, (85)

where u is a column of n complex fields ua and u† · u ≡ ∑n
a=1 u∗

aua, a = 1, . . . , n. Let us
point out that solitons (i.e., static solutions with finite energy) may exist in this model only for
d = 2 space dimensions due to Derrick’s theorem. However, the integrability considerations
which follow are equally valid for time-dependent solutions, so still may be relevant for CPn

models in more than 2+1 dimensions, as well.
The equations of motions for the CPn model read

(1 + u† · u)∂2ua = 2(u† · ∂µu)∂µua. (86)

As it was established in [7] this model also possesses an integrable sector, given by the
dynamical equations

∂2ua = 0, a = 1, . . . , n (87)

and the set of integrability conditions

∂µua∂
µub = 0, 1 � a � b � n. (88)

In fact, if we assume (87), (88) the following currents are conserved (no summation over a)

J (a)
µ = ∂F

∂ua

∂µua − ∂F
∂u∗

a

∂µu∗
a, (89)

where F is an arbitrary function of u1, u
∗
1 . . . un, u

∗
n. Applying the decomposition of the

complex field used before

ua = e	a+i
a , a = 1, . . . , n (90)

we can find a geometric interpretation of the integrability conditions

(∂µ
a)
2 = (∂µ	b)

2, (91)

∂µ
a∂
µ	b = 0, 1 � a, b � n. (92)

Interestingly enough, in (2+1) dimensional spacetime, the standard integrable submodel
constitutes the BPS sector of the CPn model. That is, the solutions of the integrable subsystem
(87), (88) are nothing else but the very well-known BPS solutions of the CPn model [41–44]

U = f
|f| , (93)

where f is a vector of n + 1 (anti)holomorphic functions fi = fi(z) of z = x + iy, and
i = 0, . . . , n. Indeed, due to the conformal symmetry the general solution of the integrable
submodel is just a collection of (anti)holomorphic functions

ua = ua(z) or ua = ua(z̄). (94)
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Then, using the local U(1) invariance one can express the BPS solutions of the CPn model in
the following form:

U = 1√
1 + u∗

aua

(
1
u

)
. (95)

Of course, as one usually wants to deal with objects carrying finite topological charge, the
holomorphic function must be restricted to arbitrary rational functions.

In more than two spatial dimensions the conformal symmetry does not occur and the
chance for the existence of an integrable submodel with a non-trivial set of solutions becomes
limited. It is easy to see that a general solution of the integrability conditions is ua = Aav,
where Aa are complex constants and v is any complex scalar field which satisfies the (d + 1)

dimensional scalar eikonal equation

∂µv∂µv = 0.

If one combines this result with the fact that such configurations should obey the dynamical
equation (87) as well, then one may expect that the chances for non-trivial solutions of
the integrable sector are highly reduced. This, of course, somehow restricts the range of
applications of the obtained integrable sectors.

3.2. New integrable submodels

In this section we construct new integrable sectors in the CPn model. In general, such
alternative submodels are found if much less restrictive constraints are imposed.

We consider currents similar to (89)

J (a)
µ = ∂F

∂ua

∂µua − ∂F
∂u∗

a

∂µu∗
a, a = 1, . . . , n (96)

but the function F is assumed to depend on the field variables in a specific manner. Namely,

F = F(u∗
1u1 + · · · + u∗

kuk, u
∗
k+1uk+1, . . . , u

∗
nun). (97)

Of course, we expect that the currents are conserved, i.e.,

∂µJ (a)
µ = 0, a = 1, . . . , n. (98)

Thus, taking into account the field equations (86), we get the integrability conditions

k∑
b=1

(u∗
au

∗
b∂µua∂

µub − uaub∂µu∗
a∂

µu∗
b) = 0, a = 1, . . . , n (99)

k∑
b=1

(u∗
aub∂µua∂

µu∗
b − uau

∗
b∂µu∗

a∂
µub) = 0, a = 1, . . . , n (100)

u∗
au

∗
b∂µua∂

µub − uaub∂µu∗
a∂

µu∗
b = 0, b = k + 1, . . . , n a = 1, . . . , n (101)

u∗
aub∂µua∂

µu∗
b − uau

∗
b∂µu∗

a∂
µub = 0, b = k + 1, . . . , n a = 1, . . . , n. (102)

Once again, it is convenient to rewrite them using (90). Then,

∂µ
a

(
k∑

b=1

∂µ	b

)
= 0, ∂µ	a

(
k∑

b=1

∂µ
b

)
= 0, a = 1, . . . , k (103)

∂µ
a∂
µ	b = 0, ∂µ	a∂

µ
b = 0, a = 1, . . . , n, b = k + 1, . . . , n. (104)
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As we described in the Skyrme model in the previous section (or in the Faddeev–Niemi model
in [18]), in an integrable sector the gradients of the pertinent real scalar fields (real coordinated
on the target space) must be perpendicular. However, this does not mean that all gradients
are mutually perpendicular. Varying the form of the F function we get that for some of the
gradients it is sufficient to be perpendicular to a sum of others.

To obtain even weaker integrability conditions, and as a consequence a submodel with a
larger set of solutions, one can take under consideration the following current:

Jµ =
n∑

a=1

(
∂F
∂ua

∂µua − ∂F
∂u∗

a

∂µu∗
a

)
. (105)

In this case the integrability conditions read

(
k∑

a=1

∂µ
a

)(
k∑

b=1

∂µ	b

)
= 0, (106)

∂µ
a

(
k∑

b=1

∂µ	b

)
+ ∂µ	a

(
k∑

b=1

∂µ
b

)
= 0, a = k + 1, . . . , n (107)

∂µ
a∂
µ	b + ∂µ	a∂

µ
b = 0, a = k + 1, . . . , n, b = k + 1, . . . , n. (108)

To conclude, there is a family of integrable sectors of CPn model. Integrability conditions
vary from the strongest ones (the most restrictive)

∂µ
a∂
µ	b = 0, a, b = 1, . . . , n, (109)

when F = F(u1u
∗
1, . . . , unu

∗
n) to the weakest ones (the least restrictive)(

n∑
a=1

∂µ
a

) (
n∑

b=1

∂µ	b

)
= 0, (110)

if F = F(u1u
∗
1 + · · · + unu

∗
n) and take all possible intermediate cases. Obviously, the full

integrable submodel consists of the field equations (86) and a choice of an integrability
condition, as discussed above.

It should be underlined that the construction of such integrable sectors of the CPn model
remains unchanged if we add a potential term to the Lagrangian [45].

Let us again interpret the derived integrable sectors in the context of CPn model in (2 + 1)

dimensions. One can check that the most restrictive constraint (109) possesses, in addition to
standard ones (94), the following solution:


a = 
a

(
z

z∗

)
, 	a = 	a(zz

∗), (111)

where 
a,	a are arbitrary functions depending on phase and modulus respectively. On
the other hand it is known that the CPn model also has non-BPS solutions, which can be
constructed from the BPS solitons by acting with a projective operator [41–44]

U = P k
+ f∣∣P k
+ f

∣∣ , (112)

where

P+ f = ∂z f − (f†∂z f)
f

|f|2 , k = 0, . . . , n.
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These non-BPS solutions (or at least some of them) obey the integrability conditions. Let us
consider first the example f = (1, z, z2), then for k = 1

U = 1√
1 + 4|z|2 + 6|z|4 + 5|z|6 + |z|8


z∗(1 + 2|z|2)

|z|4 − 1
−z(2 + |z|2)


 . (113)

Now, after expressing U by means of the parameterization (95) we get that the pertinent scalar
complex functions are in the form (111). Since all non-BPS solutions by construction fulfil
the dynamical equation of motions (86), we can conclude that new integrable sectors of the
CPn model in two spatial dimensions consist of BPS as well as non-BPS states.

It is not difficult to generalize this example to a whole class of non-BPS solutions which
obey the same integrability condition (111). Indeed, let us choose for ffi = ciz

li , i.e., each fi

is a monomial ciz
li for integer li and arbitrary complex constant ci . Further, we may assume

f0 = 1, i.e., c0 = 1 and l0 = 0 without loss of generality. Then it is easy to find that

P+fi = ciz
li−1

(
li −

∑n
j=0 c∗

j cj ljρ
2lj∑n

k=0 c∗
kckρ2lk

)
≡ ciz

li−1gi(ρ) (114)

and

|P+ f|2 = 1

ρ2


 n∑

j=0

c∗
j cj l

2
j ρ

2lj −
(∑n

j=0 c∗
j cj ljρ

2lj
)2∑n

k=0 c∗
kckρ2lk


 ≡ K(ρ)2

ρ2
, (115)

where z ≡ ρeiϕ . Therefore, for the components Ui of the vector U we find

Ui = e−iϕci eiliϕ
ρli gi(ρ)

K(ρ)
≡ e−iϕ g0(ρ)

K(ρ)
f̃ i . (116)

The overall phase factor eiϕ can be skipped because of gauge invariance of the CPn model.
Further we have f̃ = (1, ũ), i.e., f̃ 0 = 1 and f̃ i = ũa for i = a = 1, . . . , n, and

ũa = ca eilaϕ
ρla ga(ρ)

g0(ρ)
. (117)

Obviously, 
̃a = laϕ, whereas 	̃a = 	̃a(ρ) is a function of ρ only, therefore the integrability
condition (111) continues to hold.

As we see, in (2 + 1) dimensions, there is a striking correspondence between integrability
and BPS property of solutions. The strong integrable sector is just the BPS sector whereas
weaker integrable sectors contain also non-BPS solutions. In higher dimensions we usually
do not have any BPS solitons; however, the strong as well as weaker integrable sectors are
still well defined. Thus, integrability is an important tool in investigating nonlinear models in
higher dimensions.

An algebraic meaning of the family of integrable sectors can be easily found if one
considers volume-preserving diffeomorphisms of the volume 2n-form on the CPn target space

� = g(uu∗
1, . . . , unu

∗
n) du1 ∧ du∗

1 ∧ · · · ∧ dun ∧ du∗
n. (118)

In other words we are interested in transformations ua → va(u1, u
∗
1, . . . , un, u

∗
n) which leave

the 2n-form unchanged

� = g(uu∗
1, . . . , unu

∗
n) du1 ∧ du∗

1 ∧ · · · ∧ dun ∧ du∗
n

= g(vv∗
1 , . . . , vnv

∗
n) du1 ∧ dv∗

1 ∧ · · · ∧ dvn ∧ dv∗
n. (119)

Let us discuss infinitesimal transformations ua → ua + εa . Then

dua → dua + εa
ub

dub + εa
u∗

b
du∗

b, (120)
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where summation over indices b is performed. Now, the invariance condition (119) gives

g
(
ε1
u1

+ ε∗1
u∗

1
+ · · · + εn

un
+ ε∗n

u∗
n

)
+ (∂1g)(u1ε

∗1 + u∗
1ε

1) + · · · + (∂ng)(unε
∗n + u∗

nε
n) = 0. (121)

Here εa
ua

≡ ∂ua
εa and ∂1g ≡ ∂u1u

∗
1
g, etc. After introducing

εa = g−1Fu∗
a

(122)

we can rewrite equation (121) in a very compact form(
∂u1∂u∗

1
+ · · · + ∂un

∂u∗
n

)
(F + F ∗) = 0. (123)

The general solution reads

F + F ∗ =
∑

i

ζ i
(
u

σi

1 , . . . , uσi

n

)
, (124)

where σi = 1, 2 and u1 ≡ u, u2 ≡ u∗. However, from our point of view it is sufficient to
investigate only pure imaginary solutions

F + F ∗ = 0. (125)

Thus, F = iG where G = G(u1, u
∗
1, . . . , un, u

∗
n) is an arbitrary real function. It follows that

all volume-preserving diffeomorphisms are generated by the vector fields

vG = ig−1
n∑

a=1

(
Gu∗

a
∂ua

− Gua
∂u∗

a

)
, (126)

which satisfy the Lie algebra

[vG1 , vG2 ] = vG3 , G3 =
n∑

a=1

(
G1u∗

a
G2ua

− G1ua
G2u∗

a

)
. (127)

In order to find Abelian subalgebras we assume that G1,2 take the following form:

G = G(u1u
∗
1 + · · · + uku∗

k, uk+1u
∗
k+1, . . . , unu

∗
n), (128)

where k = 1, . . . , n is a fixed number. Indeed, the corresponding commutator vanishes. Thus
for each value of k we get an Abelian subalgebra Hk . It is straightforward to see that these
subalgebras form a tower of algebras

H1 ⊃ H2 ⊃ · · · ⊃ Hn−1. (129)

Further, the vector fields vG can be identified with the Noether charges of the currents (105),
once the identification G → F is made.

4. Conclusions

We have shown that the method, developed in [18] and originally devoted to the construction
of integrable submodels for S2 valued field theories, can be easily adapted for models with
different target space, and defined in an arbitrary dimensional spacetime.

The interesting point is that the new integrable sectors of Skyrme as well as CPn models
derived here are defined by integrability conditions which are considerably weaker than the
standard ones. Thus, one might expect that the set of solutions of the integrable subsystems
is larger. In particular, it may cure the problem of the apparent non-existence of soliton
solutions with a topological number larger than 1 in the standard integrable sector of the
Skyrme model. However, the problem whether the new integrable submodel possesses such
additional topological solutions is still an open question.
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Moreover, a correspondence between BPS sector and strong integrability in the (2+1)

dimensional CPn model has been established. In addition, we have shown that weak integrable
sectors support non-BPS solutions. Such a relation holds only in three-dimensional spacetime
but it may indicate that in higher dimensions integrable submodels can play the role of
BPS sectors. Therefore, one can hope that the construction of integrable submodels might
compensate for the non-existence of BPS sectors and provide a useful tool for constructing
solitons.
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